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ABSTRACT

The occurrence of bubbles in pipeline parallelism is an inherent limitation that can
account for more than 40% of the large language model (LLM) training time and is
one of the main reasons for the underutilization of GPU resources in LLM training.
Harvesting these bubbles for GPU side tasks can increase resource utilization
and reduce training costs but comes with challenges. First, because bubbles are
discontinuous with various shapes, programming side tasks becomes difficult while
requiring excessive engineering effort. Second, a side task can compete with
pipeline training for GPU resources and incur significant overhead. To address
these challenges, we propose FreeRide, a system designed to harvest bubbles in
pipeline parallelism for side tasks. FreeRide provides programmers with interfaces
to implement side tasks easily, manages bubbles and side tasks during pipeline
training, and controls access to GPU resources by side tasks to reduce overhead.
We demonstrate that FreeRide achieves about 8% average cost savings with a
negligible overhead of about 1% for typical long training times of LLMs while
serving model training, graph analytics, and image processing side tasks.

1 INTRODUCTION

Large language models (LLMs) are usually trained on GPUs. As these models continue to increase in
size, their GPU memory requirements can easily outstrip the capacity of a single GPU (Zhang et al.,
2022). Consequently, to accommodate this increase in size and to boost training performance, it is a
common practice to parallelize LLM training across multiple GPUs distributed over several servers.

Pipeline parallelism is a prevalent training paradigm for LLMs using multiple GPUs. In this paradigm,
the model is divided into multiple stages which are distributed across different GPUs. During training,
the forward propagation (FP) and backward propagation (BP) of different input data are carried out
in parallel by the pipeline training system at each stage. The pipeline training system schedules these
operations in each epoch to train LLMs (Liu et al., [2023; |Q1 et al., | 2024)).

An inherent limitation of pipeline parallelism is bubbles — periods in pipeline training where the
GPU stays idle due to unsatisfied dependencies between FP and BP operations (Liu et al., [2023]).
Experimentally, we observe that bubbles can constitute 42.4% of the pipeline execution time, which
results in significant under-utilization of GPU resources used to accelerate pipeline training. Similar
levels of under-utilization have also been reported in other studies (Zhang et al.} 2022).

GPUs are crucial resources, especially those high-end models required for training LLMs (Zhang
et al., [2022). To enhance utilization, prior work has explored reducing bubbles by improving how FP
and BP operations are interleaved (Fan et al., [2021; [Liu et al.,2023). These approaches are effective
for intra-epoch bubbles because they change how operations are interleaved within a pipeline epoch.
However, they do not remove the inter-epoch bubbles that occur before and after a pipeline epoch.
Prior work has also proposed to decouple the computation of gradients for the input and model weights
to mitigate inter-epoch bubbles (Qi et al.l 2024). However, they increase the size of activations,
exacerbating GPU memory consumption, a common bottleneck in training LLMs.

Given the difficulty and overhead incurred in eliminating these bubbles, an alternative approach is
to acknowledge their existence and utilize them by running additional workloads on a GPU. For
example, Bamboo and PipeFisher implement procedures that enhance pipeline training and run them
during bubbles (Thorpe et al.l 2023} |Osawa et al., 2023)). However, they only target specialized
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procedures that are tightly coupled with pipeline training, requiring the training system and the
procedures to be highly customized. Consequently, they cannot be used for generic GPU workloads.

In this paper, we present FreeRide, a holistic system to harvest bubbles in pipeline parallelism to serve
extra GPU workloads as side tasks. There are two main challenges that FreeRide has to overcome.
First, customizing side tasks for bubbles of various shapes, i.e., their duration and available GPU
memory, requires enormous programming effort. Second, LLM training requires high-end GPUs that
are expensive and in high demand. If side tasks interfere with the main pipeline training workload,
e.g., accessing more GPU resources than bubbles can provide, they will slow down pipeline training
and significantly increase training costs.

Our approach to overcoming the programming complexity is based on the observation that many
GPU workloads naturally consist of small, repetitive steps, such as the epochs in model training
that repeatedly load data and update model weights. To reduce the programming effort, FreeRide
introduces a framework that abstracts away the implementation details of side tasks, allowing pro-
grammers to adapt various side tasks to fit into the bubbles. The key idea is to represent the life cycle
of a side task, from its process creation to termination, as states in a state machine. FreeRide provides
two sets of unified interfaces — the iterative interface that features lower performance overhead, and
the imperative interface that features better versatility. They facilitate the implementation of side
tasks as state transitions with little engineering effort. FreeRide manages side tasks through these
interfaces and serves them during bubbles.

FreeRide limits the GPU resource consumption of side tasks through the automated side task profiler
and the side task manager. The side task profiler first captures the key performance characteristics of
the newly implemented side tasks. The side task manager coordinates a group of side task workers,
one for each GPU in the platform, and assigns each of the side tasks to one of the workers based
on the characteristics. During pipeline training, bubbles are reported to the side task manager from
FreeRide-instrumented pipeline training system. The side task manager starts side tasks when the
bubble period begins and pauses them when the bubble ends. A side task worker deploys each
side task on top of CUDA MPS (Nvidia, [2024d) to limit its GPU memory consumption and uses
Docker (Bernstein, 2014]) for isolation. These components work collaboratively to serve side tasks
during bubbles, achieving a low performance overhead on the primary pipeline training workload.

In summary, FreeRide is a holistic solution that manages and serves the side task by leveraging
bubbles in pipeline training, while maintaining minimal performance overhead and requiring low
programming effort. We evaluate FreeRide by deploying it to run side tasks alongside DeepSpeed
that runs pipeline training (Rasley et al.l 2020). We measure the time increase of pipeline training
as the performance overhead caused by side tasks. As the throughput of different side tasks is not
directly comparable with the pipeline training workload, we use the cost of GPUs as a unified metric,
i.e., the cost of the extra execution time from co-locating side tasks with pipeline training vs. the cost
saved from running side tasks that otherwise would run on dedicated lower-tier GPUs.

The contributions of this paper are as follows:

* We study the bubbles in pipeline parallelism, present their various shapes in terms of duration and
available GPU memory, and demonstrate their potential for side tasks.

* We present the programming framework and interfaces of FreeRide based on a state machine
abstraction to implement generic side tasks with little engineering effort.

* We evaluate FreeRide with model training, graph analytics, and image processing side tasks to
demonstrate FreeRide’s effectiveness in harvesting bubbles in pipeline parallelism while reducing
performance overhead.

* By serving side tasks based on the iterative interface, FreeRide achieves an average cost savings
of 7.8% with a low performance overhead of 1.1%. This is significantly better than using CUDA
MPS (Nvidial 2024d) directly to co-locate the tasks, which results in a 4.5% cost increase and
48.7% overhead. When handling a mix of these 3 types of side tasks, FreeRide achieves 10.1%
cost savings with a 1.1% overhead.
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Figure 1: A pipeline training epoch in DeepSpeed and statistics of bubbles for different model sizes.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the underutilization issues due to bubbles in pipeline parallelism
and then the motivation for utilizing the bubbles to execute generic workloads.

2.1 PIPELINE PARALLELISM AND BUBBLES

Pipeline parallelism is a commonly used scheme to train LLMs that exceed the memory capacity of a
single GPU (Rasley et al.|[2020; Shoeybi et al.,2020). There are periods in pipeline training when the
GPU streaming multiprocessor (SM) occupancy is low, as depicted by the green curves in Figure|[T[a).
We refer to these periods as bubbles in the pipeline, marked as shaded areas. Bubbles inherently
exist in pipeline parallelism and occur repetitively throughout training, as they are fundamentally
caused by unsatisfied dependencies between FP and BP operations (Liu et al.,[2023)). In the example
of Figure[T] Stage 1 must wait for input from Stage 0 before executing its first FP operation, creating
a bubble in Stage 1 that starts from ¢ + 0.

To study bubbles in pipeline parallelism, we train a 3.6B-parameter LLM adapted from GPT2-
XL (Radford et al.l 2019;|Choi et al., 2023} [Karpathyl 2024) using DeepSpeed (Rasley et al., |[2020)
on a 4-GPU server (detailed setup in Section . The training is deployed as a 4-stage pipeline, and
each stage takes one GPU as shown in Figu;% Overall, we observe that bubbles exhibit different
characteristics across all 4 stages.

2.1.1 BUBBLE CATEGORIZATION

We categorize the bubbles into 3 types based on their positions in the training pipeline and causes.

o Type-A bubbles appear at the start and end of each epoch in all stages except for the first stage.
They are due to cascading dependencies between operations at the start and end of an epoch. When
an epoch starts, the FP operations start at Stage 0, while all other stages wait for input from preceding
stages to start their first FP operation. Likewise, at the end of an epoch, the last BP operation starts at
Stage 3 and all other stages wait for their succeeding stages to start their last BP operation.

o Type-B bubbles occur in the middle of each epoch on all stages except the last one. They are
caused by dependencies between interleaved FP and BP operations. Once the first FP operation
reaches the last stage, all previous stages must wait for the corresponding BP operation before they
can proceed with other operations, which causes Type-B bubbles.

o Type-C bubbles also occur in the middle of each epoch. Since BP operations typically take longer
than FP operations (Zheng et al., |2022), interleaved yet unaligned FP and BP operations create
bubbles in each stage except the last. For instance, in Figure[T(a), when Stage 2 finishes its third BP
operation, it must wait for input to its fourth BP operation, which is still being processed in Stage 3,
causing a type-C bubble.
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Bubble Duration. In our training setup, the duration of a bubble ranges from 0.22 to 1.04 seconds,
depending on its type and stage. The duration increases for Type-A bubbles but decreases for Type-B
bubbles from Stage 0 to Stage 3. This is because of the cascading dependency from Stage 3 to Stage 0
for Type-A bubbles and from Stage 0 to Stage 3 for Type-B bubbles. For example, a Type-B bubble
at Stage 2 is due to an unfinished BP operation at Stage 3, with the same bubble at Stage 1 caused by
Stage 2. The accumulated time to satisfy dependencies elongates Type-A or Type-B bubbles at later
stages. However, Type-C bubbles are caused by unaligned FP and BP operations. Therefore, they
have a short duration and do not exhibit the same stage-dependent variations.

Available GPU Memory. Determined by the stage, the available GPU memory of a bubble ranges
from less than 3 GB to more than 20 GB in our setup. As shown by Figure[I[b), within a stage, the
GPU memory consumption of pipeline training remains the same. Thus, the bubbles within the same
stage have the same amount of available GPU memory. Because the later stages consume less GPU
memory to store activations used by BP operations (Liu et al., 2023)), the available GPU memory
increases from Stage 0 to Stage 3.

We further study pipeline training of models of different sizes. As shown in Figure [I[c), bubble
shapes differ. Overall, bubbles in larger LLMs have less available memory and shorter duration, but
the distributions are similar as training follows the same pipeline schedule. Even larger models do
not eliminate bubbles as they inherently exist. Under the same configuration, the characteristics of
bubbles remain the same during training as epochs are repetitive and stable.

2.1.2 BUBBLE RATE

Besides the bubble shape, we evaluate the overall bubble rate, i.e., the total bubble time over pipeline
training time. When the model size increases from 1.2B to 6B parameters, as shown in Figure[I(d),
both the per-epoch time in pipeline training and the total per-stage bubble time decrease. Therefore,
the bubble rate drops only slightly from 42.4% to 40.4%. We also evaluate a larger micro-batch
number, i.e., an increase from 4 (used in Figures[I) to 8. The bubble rate drops to 26.2% as each
epoch takes longer.

Prior work has focused on reducing bubbles in pipeline parallelism. One approach is designing
different ways of interleaving FP and BP operations (Fan et al.| 2021;|Liu et al.,|2023)). This approach
optimizes the scheduling strategies and interleaves FP and BP operations within an epoch. Therefore,
they are effective for Type-B and Type-C bubbles that appear inside an epoch but not for Type-A
bubbles. Another approach is to reduce Type-A bubbles by decoupling the computation of gradients
for the input and the model weights (Qi et al.,[2024)). This comes at a cost of higher GPU memory
usage due to the extra activation storage, exacerbating the GPU memory bottleneck in LLM training.
Despite these efforts, none of the approaches fully eliminate bubbles in pipeline training.

2.2 UTILIZING BUBBLES

The difficulties in mitigating these bubbles motivate an alternative approach — acknowledging
their existence and leveraging their resources for benefits. GPUs used for training are generally
compute-rich, with sufficient GPU memory available during the bubbles to accommodate other GPU
workloads. Therefore, bubbles can be used to run workloads that otherwise require dedicated GPUs.

Previous work attempts to leverages such GPU resources in two ways, (1) by implementing dedicated
procedures, and (2) by transparent GPU sharing. Bamboo and PipeFisher implement procedures
that enhance pipeline training and run them during bubbles (Thorpe et al.l 2023} Osawa et al., 2023).
However, they tightly couple the pipeline training system with the specialized procedures that involves
complicated implementation especially since such customization should consider various bubble
shapes — with durations ranging from 0.22 to 1.04 seconds, and available GPU memory from less
than 3 GB to more than 20 GB on each GPU (Section[2.1)). Therefore, they cannot be used for generic
GPU workloads.

Transparent GPU sharing does not require complicated implementation to adapt GPU workloads to
bubbles (Nvidia, 2024c:d; [Strati et al., | 2024). However, they are oblivious of the patterns of pipeline
parallel training and bubbles, and can cause significant performance overhead on the high-priority
and high-cost pipeline training (Sectionfd). In addition, some GPU sharing work is tailored for certain
software toolchain, which significantly limits its versatility (Strati et al., [2024)).
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Figure 3: State transitions in a side task program.

In this work, we aim to make bubble resources available to generic workloads, allowing for a
programmable and efficient use of bubbles, while minimizing the overhead of side tasks on the
high-priority pipeline training. We identify two major challenges.

Challenge 1: programming effort required to support generic side tasks. Typically, GPU
workloads are implemented based on the assumption that they have access to the full GPU and can
run continuously until they finish execution. However, bubbles are intermittent and largely vary
in duration, as in Section @ A side task should be tailored to bubble patterns — the side task
automatically pauses or resumes when a bubble ends or starts. Customizing the training framework
to embed side tasks is conceptually feasible but limits the flexibility of implementing and executing
generic GPU workloads, much like the limitations from prior work on co-running specialized
procedures (Osawa et al.,|2023; Thorpe et al., 2023).

Challenge 2: limiting the impact of side tasks. LLM training can span months on expensive
high-end GPUs and cost millions of dollars (Zhang et al.,[2022). Even with side tasks placed in the
under-utilized bubbles, they may still interfere with pipeline training, significantly increasing the cost
of LLM training and offsetting the benefit of running side tasks. However, limiting the impact of side
tasks is not trivial. As the shape of bubbles varies, naively implementing side tasks may consume
more resources than bubbles have — exceeding the duration of bubbles or even crashing the main
task due to excessive GPU memory allocation. Ideally, bubbles should be utilized without impacting
the more expensive and prioritized LLM training task.

3 DESIGN OF FREERIDE

FreeRide is our system that addresses the aforementioned challenges in utilizing bubbles in pipeline
training to serve generic GPU side tasks. It includes two programming interfaces, an automated
profiler, and FreeRide runtime consisting of a side task manager and multiple side task workers. The
programming interfaces reduce the engineering effort to implement side tasks that fit into bubbles,
and the automated profiler obtains the GPU resource consumption of side tasks, which is used by
FreeRide runtime to minimize the overhead of side tasks on pipeline training.

Figure [2] depicts the workflow of FreeRide. First, programmers adapt their side task implementation
using FreeRide’s programming interfaces (step @). FreeRide then automatically generates a profile of
the side task’s characteristics (step @), which is submitted with the side task to the side task manager
of FreeRide (step ®). During pipeline training, the side task manager continuously adds bubbles from
the instrumented training framework to FreeRide (step @). The side task manager assigns side tasks
to workers that are deployed in Docker containers (Bernstein, 2014) based on memory allocation of
pipeline training and the characteristics of side tasks (step @), and starts/pauses side tasks based on
the available bubbles (step ®). The side tasks access GPUs through MPS (Nvidia, [2024d)) (step @).
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In the remainder of this section, we introduce how FreeRide addresses the challenge to implement
side tasks in Section and how FreeRide minimizes the impact on pipeline training in Section

3.1 PROGRAMMING OF SIDE TASKS

To address the challenge in programming effort required to support generic side tasks, we first
make an important observation, that GPU workloads are not monolithic, and that they can be often
divided into smaller, repeated steps with largely predictable per-step duration, such as epochs in
model training, iterations in graph analytical workloads (Page et al.,[1998)), and steps to process each
image in image-processing workloads (Nvidia, 2019). On the other hand, bubbles also demonstrate
repeating and predictable patterns, as discussed in Section [2.1]

With these observations in mind, we abstract the life cycle of side tasks using a state machine model.
The execution of side tasks within bubbles can be implemented as state transition functions. We then
design programming interfaces based on this abstraction. They are discussed below.

As shown in Figure [3[(a), we abstract a side task using a state machine model with five states and six
state transitions. The five states capture the life cycle of a side task, from process creation to process
termination, and correspond to different uses of hardware resources, e.g., GPU memory and GPU
execution time. The six state transitions are used by the programmer to implement the user-defined
logic of a side task, e.g., allocating or releasing hardware resources or performing computation on
GPU. Once the side task is implemented, FreeRide automatically handles the state transitions at
runtime. Next, using model training as an example, we discuss the states and state transitions.

e SUBMITTED. This state means that FreeRide has profiled a task and submitted it to the side
task manager, but the side task worker has not created the side task process yet. State transition
CreateSideTask () happens automatically after the side task manager assigns a side task to a
worker and the worker creates the side task process. For a model training side task, this is where the
process is first created.

e CREATED. In this state, the worker has created the side task process, and this process has loaded
its context to the main memory but not to the GPU memory. For model training, in this state, the side
task process has already created and initialized variables in CPU memory, e.g., the dataset, the data
loader, and the loss function. However, the side task process will not load them into GPU memory
until the side task manager initiates the state transition InitSideTask () which indicates the
completion of side task initialization.

e PAUSED. This state is where the side task starts to use GPU memory. For model training, the side
task process has loaded its context, e.g., model weights and optimizer states, in the GPU memory.
However, this process waits in the PAUSED state until the side task manager transitions its state to
RUNNING through StartSideTask ().

e RUNNING. In this state, the side task executes the step-wise GPU workload. Referring to the
example above of the model training side task, this step involves reading the next batch, computing
the output and loss, updating the model weights, and resetting the optimizer states. The side task
iteratively enters the RunNextStep () state transition to execute these steps until the side task
manager transitions its state through PauseSideTask (). Therefore, in this state, the side task
process uses both the GPU memory and the GPU SMs.

e STOPPED. This state marks the end of the life cycle of a side task, where the side task process
releases all of its hardware resources and terminates. It can be transited from states CREATED,
PAUSED, and RUNNING through StopSideTask () initiated by the side task manager.

Figure [3(b) shows state transitions of a side task in Stage 0 of Figure[I] Initially, the side task is
in the PAUSED (P) state. After four FP operations in the main training workload have finished, a
bubble starts and the side task manager initiates StartSideTask () to transit the side task to
the RUNNING (R) state. After the first bubble ends, the side task manager pauses the side task via
PauseSideTask (). Then, the main training workload has BP operations and bubbles interleaved,
leading to back-and-forth transitions between PAUSED and RUNNING states of the side task.

Given the state machine abstraction, the next step is to implement side tasks, which have two
requirements. First, the programmer should be able to implement the side task in a way that can
pause at the end of a bubble and resume at the start of the next bubble. Second, the side task should
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be able to communicate with the side task manager to receive state transition RPCs for pausing and
resuming. To lift programming burdens, FreeRide provides two programming interfaces, the iterative
interface, and the imperative interface. The iterative interface is the preferred one for side tasks
in FreeRide. It requires the side task to be step-wise, e.g., model training, and provides the lowest
performance overhead. For other side tasks that cannot be explicitly implemented step-wise, the
imperative interface is the fallback solution. It offers better versatility to support (almost) generic GPU
workloads at the cost of higher performance overhead. Both interfaces incorporate the communication
of side tasks with other components, and the programmer only has to apply a few lines of changes.
We leave the details of programming interfaces as well as examples in Appendix [A.T]

3.2 MINIMIZING THE IMPACT ON PIPELINE PARALLEL TRAINING

To address the challenge of limiting the impact of side tasks on the main pipeline training workload
taking three approaches, FreeRide first leverages offline profiling to understand the shapes of bubbles
and characteristics of newly submitted side tasks (Section [3.2.I)). Based on the profiling results,
FreeRide employs one side task manager and multiple side task workers, one for each GPU. The side
task manager assigns the newly submitted side task to one of the side task workers with enough GPU
memory, and initiates state transitions of side tasks through remote procedure calls (RPCs) at the
start and end of each bubble, which are reported by DeepSpeed that we instrument (Section [3.2.2)).
FreeRide further employs CUDA MPS (Nvidia, 2024d)) and a twofold mechanism to prevent side
tasks from excessively allocating GPU memory or not pausing correctly (Section [3.2.3).

3.2.1 PROFILING BUBBLES AND SIDE TASKS

Bubbles. To know the shapes of bubbles, FreeRide runs DeepSpeed, monitors its estimated SM occu-
pancy and GPU memory consumption through the PyTorch profiler (PyTorchl b)), and automatically
measures each bubble’s duration and available GPU memory. Since the pipeline schedule determines
bubbles, this offline profiling is done only once for each model and pipeline scheduling on the same
hardware platform.

Side tasks. After the programmer implements the side task, FreeRide profiles it with the automated
profiling tool for its performance characteristics of GPU memory consumption and per-step duration,
which FreeRide uses for side task management and GPU resource limit. For side tasks implemented
using the iterative interface, this procedure is fully automated. The profiling tool runs the side
task, monitors its GPU memory consumption, and records the timestamps at the start and end
of RunNextStep () for the per-step duration. For side tasks implemented using the imperative
interface, the tool profiles GPU memory consumption in the same way. However, since the side task
is not implemented step-wise, the automated profiling tool does not measure the per-step duration.

3.2.2 SIDE TASK MANAGEMENT

FreeRide’s side task management has two main roles. First, upon receiving a new side task, the side
task manager assigns it to a suitable side task worker. Second, when the pipeline training system
adds bubbles to the side task manager, the side task manager initiates the state transitions of side
tasks (Figure[3|(a)) through RPCs. This way, the side tasks are only served during bubbles and do not
compete for GPU resources with the main pipeline training workload.

To do so, when the side task manager receives a new side task, it first selects all workers whose
bubbles have enough available GPU memory for the side task. Then, it assigns the side task to
worker with the least side tasks waiting to be served. During pipeline training, the side task manager
periodically checks whether any bubble has just started or expired. If a bubble has just started, the
side task manager starts the execution of the corresponding side task, or adds a new side task to the
bubble’s worker. If a bubble has just expired, the side task manager pauses the corresponding side
task. We demonstrate the detailed side task management algorithms in Appendix [A.7]

3.2.3 GPU RESOURCE LIMIT

GPU Memory. FreeRide leverages MPS to impose GPU memory limit on side tasks. I.e., when a
worker creates a side task, it sets GPU memory limits using MPS. The side task process triggers an
out-of-memory (OOM) error when its memory consumption exceeds the limit, but other processes
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remain unaffected. However, FreeRide is also compatible with other mechanisms for limiting GPU
memory, e.g., multi-instance GPU (MIG) (Nvidial 2024c) or manually implemented accounting
through intercepting CUDA kernel calls (Strati et al., [2024).

GPU Execution Time. FreeRide limits GPU execution time using two mechanisms. (1)
The program-directed mechanism is tailored for the iterative interface. When the side task man-
ager makes an RPC to initiate StartSideTask () state transition of a side task, it also sends the
end time of this bubble to the side task. After the state transition finishes, the side task enters the
RUNNING state. Before the side task automatically starts RunNext Step (), the program-directed
mechanism checks if the remaining time of the bubble is enough for the side task to execute the next
step. The side task will only execute the next step if the remaining time exceeds the per-step duration.
(2) The framework-enforced mechanism supports side tasks implemented using the imperative inter-
face and is also a fallback mechanism for the iterative interface. After the side task manager initiates
the PauseSideTask () state transition for a side task, it waits for a short grace period before
checking the last paused timestamp — a timestamp maintained by the interface that records the last
time the side task was paused. If this timestamp is not updated after the state transition begins, the
side task manager assumes that the interface failed to pause the side task correctly and subsequently
instructs the corresponding worker to terminate the side task process using STGKILL. The side task
initialization, InitSideTask, which runs only once throughout the life cycle of a side task, is also
protected by this mechanism.

4 EVALUATION
In this section, we evaluate the benefits and overhead of using FreeRide to serve side tasks.

4.1 METHODOLOGY

We describe the experimental setup of our evaluation.

Server setup. We use a main server (Server-I) with four RTX 6000 Ada GPUs each with 48
GB of GPU memory to evaluate all pipeline training workloads and side tasks. We use a second
server (Server-II) with an RTX 3080 GPU with 10 GB of memory to run side tasks separately. Due
to the global shortage of cloud GPUs, we quote prices from a community cloud vendor RunPod
(2024) that has GPUs available. The prices of the two servers are Pserver—1 = $3.96/hour and
Pserver—11 = $0.18/hour, respectively (as of June, 2024). The price differences between higher- and
lower-tier GPUs in major cloud GPU platforms are similar (Lambdal 2024; |/ Amazon, 2024aib). We
deploy both pipeline training and side tasks in Docker 26.1.2 (Bernstein, [2014).

Comparison points. We evaluate FreeRide for side tasks developed with both the iterative and
imperative interfaces. For comparison, we evaluate MPS (Nvidial [2024d), where we set pipeline
training with the highest priority and side tasks with a lower priority. We also evaluate a naive
co-location approach by directly co-running side tasks and the main pipeline training workload on
the same GPU.

Pipeline training setup. We train LLMs adapted from GPT2-XL (Radford et al., 2019; Karpathyl,
2024 |Chot et al., 2023)) with model sizes 1.2B, 3.6B, and 6B with DeepSpeed 0.12.2 (DeepSpeed,
2023) in a 4-stage pipeline on Server-II (stages 0—3 in Figure[I)). We always maximize the micro-
batch size (until just before OOM) to make full use of GPU memory during training.

Side task workloads. We implement 3 types of side tasks: model training, graph analytics, and
image processing using both the iterative and the imperative interfaces of FreeRide. Model training
side tasks include ResNet18, ResNet50, and VGG19. We use the out-of-the-box models from
PyTorch (PyTorch| |a) and implement the training procedure ourselves. Graph analytics side tasks
are adapted from Gardenia (Xu et al.| |2019). It includes PageRank (PR) based on the PageRank
algorithm (Page et al.l [1998)) and Graph SGD (SGD) which uses stochastic gradient descent to solve
matrix factorization (Koren et al.|[2009), both using the Orkut dataset (Yang & Leskovec, [2012)). The
image processing (Image) side task resizes an input image and adds a watermark, which we adapt
from Nvidia’s example (Nvidia, [2019).
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Table 1: Time increase I (lower the better) and cost savings S (positive=benefit, negative=loss, higher
the better) of running DeepSpeed with side tasks using RTX 3080 as the proxy.

FreeRide Iterative  FreeRide Imperative MPS Naive

Side task 1% S % 1% S % I % S% 1% S%
ResNet18 0.9 6.4 22 6.0 16.8 -1.5 498  -30.7
ResNet50 0.9 53 3.8 39 19.8 5.1 619 -44.0
VGGI19 0.9 3.9 5.0 1.4 214 91 534 -39.7
PageRank 1.0 11.1 2.5 16.4 17.3 35 451 -16.0
Graph SGD 1.2 11.8 4.1 22.8 231.0 -26.7 624 9.1
Image 1.4 5.7 2.7 6.1 9.5 72 460 -293
Mixed 1.1 10.1 43 11.0 24.8 02 643 -355

Metrics. We use the time increase I and cost savings S in Dollars due to side tasks as metrics.
Time increase describes the performance overhead of co-locating side tasks with the main pipeline
training workload. It is the ratio of extra time of pipeline training with side tasks, compared with the
original DeepSpeed without any side tasks, defined as

I— TwithsideTasks — TnoSideTask

TnoSideTask

Cost savings describe the benefits of running side tasks. Since we cannot directly compare the
throughput of different side tasks and the main pipeline training workload, we use their cost (dollars
spent on GPUs) as a proxy. First, we define the cost of pipeline training without side tasks as
ChoSideTask, and that with side tasks as ClyithSideTasks- Lhen, we define the cost of running the same
side tasks on dedicated GPUs as CyigeTasks- Finally, we define cost savings .S as

g ClideTasks — (CiwithSideTasks — ChoSideTask )
C’noSideTask

We demonstrate the detailed definitions in Appendix

4.2 PERFORMANCE EVALUATION

We run DeepSpeed to train a 3.6B model for 128 epochs with side tasks from Section.T]and compare
the performance overhead, i.e., time increase (/) and cost savings (S) of using FreeRide with the two
interfaces and the two comparative methods (as in Section[d.T)) using RTX 3080 as the proxy. For
model training side tasks, we set the batch size to 64. We run the same side task in all workers if they
have enough GPU memory. We also run a mixed workload with 4 side tasks: PageRank, ResNet18,
Image, and VGG19, each in one worker corresponding to the GPU of stages 0—3 in Section {1}
respectively.

The results are summarized in Table [I] FreeRide consistently exhibits lower overhead than the
comparative methods, showing only a 1.1% average time increase while achieving 7.8% average cost
savings through side tasks using the iterative interface. The imperative interface achieves comparable
cost savings but with a higher overhead as it relies on the less efficient framework-enforced mechanism
to limit the side task’s execution time (Section[3.2.3). In comparison, the average time increase and
cost savings for MPS are 48.7% and -4.5%, and for Naive are 54.7% and -29.2%. Their negative
cost savings indicate that these approaches can increase the total cost. Notably, the time increase of
Graph SGD with MPS is as high as 231.0%. This anomaly is due to Graph SGD’s high compute
intensity. We conclude that FreeRide effectively utilizes bubbles in pipeline training for serving side
tasks. While the comparative methods can utilize bubbles, unlike FreeRide, they are not designed for
this purpose. Thus, they are inefficient in using bubbles, leading to higher costs.

4.3 BUBBLE TIME BREAKDOWN

In Figure 4] we present a breakdown of bubble utilization in FreeRide under the iterative interface.
No side task: OOM means that some bubbles are unused due to their limited available GPU memory.
E.g., the GPU memory consumption of VGG19 or the Image side task is larger than the GPU memory
of bubbles in stages 0 and 1, so they cannot use half of the bubble time. No side task: insufficient
time refers to idle time because the remaining time of a bubble is not enough for the next step of the
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Figure 4: Bubble time breakdown.

side task. FreeRide runtime is the time consumed by running FreeRide, including the interface code
and the side task manager. Most of the bubble time with enough available GPU memory size is used
by side tasks. For side tasks with shorter per-step durations, e.g., PageRank, the ratio of FreeRide
runtime is higher because more iterations of the iterative interface are executed. In contrast, side
tasks with longer per-step durations have lower bubble utilization because of insufficient time.

We also conducted sensitivity in Appendix [A.4]to demonstrate the superiority of FreeRide in different
pipeline training settings, and studied the effectiveness of GPU resource limit mechanisms that keep
of FreeRide that keep the time increase low in Appendix

5 DISCUSSION AND RELATED WORK

Security. Prior GPU sharing solutions tend to prioritize efficiency and assume a safe environment.
E.g., Orion assumes that co-located GPU workloads are in the same trust domain (Strati et al., 2024)).
FreeRide provides the same security and isolation guarantees as the lower-level system it is built upon.
It incorporates MPS to limit GPU memory which provides separate GPU address spaces (Nvidial
2024b) for pipeline training and side tasks, and Docker for environment isolation (Docker, [2024)).
Orthogonally, security for co-located GPU workloads is an active research area (Liu et al., 2019
Zhang et al.,|2024). We expect future work to co-design security with efficient GPU sharing.

Side task management. By implementing different strategies in its side task manager, FreeRide
can incorporate more sophisticated management, e.g., co-locating multiple side tasks with various
performance characteristics in the same worker to improve the utilization of bubbles (Liu et al.,
2022b) or serving side tasks with fairness or performance guarantees (Ghodsi et al., 201 1).

Scalability. FreeRide can be extended for better scalability. As FreeRide implements communications
among its components using RPCs, it can be easily extended to distributed settings with side tasks on
multiple servers. FreeRide can also be extended for multi-GPU side tasks, e.g., distributed training
and big data processing (Liu et al.,[2022a), by launching workers with access to multiple GPUs.

Other ML accelerators. This work targets GPUs due to their widespread accessibility. FreeRide’s
mitigation for bubbles fundamentally applies to other ML accelerators (Jouppi et al., 2017} |Meta,
2023)), provided that the platform has isolation and resource limit options for each process. We
anticipate future work to incorporate the approach of FreeRide with other ML platforms.

6 CONCLUSION

We propose FreeRide, a system to harvest the bubbles in pipeline parallelism to serve generic GPU
side tasks. It provides programming interfaces that abstract the life cycle of a side task as different
states of a state machine and allows programmers to implement side tasks with little engineering
effort. The side task manager and side task workers manage bubbles and side tasks and reduce the
performance overhead of side tasks on pipeline training. Our evaluation shows that, on average,
FreeRide achieves 8% cost savings for long-running and expensive pipeline training with a negligible
performance overhead of only about 1%.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Amazon. Price of AWS G4 instances. https://aws.amazon.com/ec2/
instance—-types/g4/, 2024a.

Amazon. Price of AWS P4 instances. https://aws.amazon.com/ec2/instance-types/
p4 /| 2024b.

David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud Computing,
2014. ISSN 2325-6095. doi: 10.1109/MCC.2014.51. URL https://ieeexplore.ieee,
org/document /7036275, https://doi.org/10.1109/MCC.2014.51.

Sangjin Choi, Inhoe Koo, Jeongseob Ahn, Myeongjae Jeon, and Youngjin Kwon. EnvPipe:
Performance-preserving DNN training framework for saving energy. In USENIX Annual
Technical Conference (ATC), 2023. ISBN 978-1-939133-35-9. URL https://wwwl
usenix.org/conference/atc23/presentation/choi. https://www.usenix.
org/conference/atc23/presentation/choil

DeepSpeed. Deepspeed 0.12.2. https://github.com/microsoft/DeepSpeed/tree/
v0.12.2,2023.

Docker. Docker security. https://docs.docker.com/engine/security/} 2024.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, Lansong Diao, Xiaoyong Liu, and Wei Lin. DAPPLE: a pipelined data
parallel approach for training large models. In Proceedings of the 26th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), 2021. ISBN 9781450382946.
doi: 10.1145/3437801.3441593. URL https://doi.org/10.1145/3437801.3441593,
https://doi.orqg/10.1145/3437801.3441593.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,
and Ion Stoica. Dominant resource fairness: Fair allocation of multiple resource
types. In 8th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI), 2011. URL https://www.usenix.org/conference/nsdill/
dominant-resource-fairness—-fair-allocation-multiple-resource-types.
https://dl.acm.org/doi/10.5555/1972457.1972490.

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford
Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir
Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug
Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean,
Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray
Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan
Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma,
Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon.
In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (ISCA), 2017. https://doi.org/10,
1145/3079856.30802406.

Andrej Karpathy. nanoGPT: The simplest, fastest repository for training/finetuning medium-sized
GPTs. https://github.com/karpathy/nanoGPT, 2024.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 2009. doi: 10.1109/MC.2009.263. https://doi.org/10.1109/MC|
2009.263.

Lambda. Pricing of Lambda. https://lambdalabs.com/service/gpu-cloud#
pricing, 2024.

11


https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/p4/
https://aws.amazon.com/ec2/instance-types/p4/
https://ieeexplore.ieee.org/document/7036275
https://ieeexplore.ieee.org/document/7036275
https://doi.org/10.1109/MCC.2014.51
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://www.usenix.org/conference/atc23/presentation/choi
https://github.com/microsoft/DeepSpeed/tree/v0.12.2
https://github.com/microsoft/DeepSpeed/tree/v0.12.2
https://docs.docker.com/engine/security/
https://doi.org/10.1145/3437801.3441593
https://doi.org/10.1145/3437801.3441593
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
https://dl.acm.org/doi/10.5555/1972457.1972490
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1145/3079856.3080246
https://github.com/karpathy/nanoGPT
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://lambdalabs.com/service/gpu-cloud#pricing
https://lambdalabs.com/service/gpu-cloud#pricing

Under review as a conference paper at ICLR 2025

Haotian Liu, Bo Tang, Jiashu Zhang, Yangshen Deng, Xiao Yan, Xinying Zheng, Qiaomu Shen,
Dan Zeng, Zunyao Mao, Chaozu Zhang, Zhengxin You, Zhihao Wang, Runzhe Jiang, Fang Wang,
Man Lung Yiu, Huan Li, Mingji Han, Qian Li, and Zhenghai Luo. GHive: Accelerating analytical
query processing in Apache Hive via CPU-GPU heterogeneous computing. In Proceedings of
the 13th Symposium on Cloud Computing (SoCC), 2022a. doi: 10.1145/3542929.3563503. URL
https://doi.org/10.1145/3542929.3563503. https://doi.org/10.1145/
3542929.3563503l

Sihang Liu, Yizhou Wei, Jianfeng Chi, Faysal Hossain Shezan, and Yuan Tian. Side channel attacks in
computation offloading systems with GPU virtualization. In IEEE Security and Privacy Workshops
(SPW), 2019. doi: 10.1109/SPW.2019.00037. https://doi.org/10.1109/SPW.2019.
00037.

Zihan Liu, Jingwen Leng, Zhihui Zhang, Quan Chen, Chao Li, and Minyi Guo. VELTAIR: Towards
high-performance multi-tenant deep learning services via adaptive compilation and scheduling. In
Proceedings of the 27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2022b. ISBN 9781450392051. doi: 10.1145/
3503222.3507752. URL https://doi.orqg/10.1145/3503222.3507752. https://
doi.org/10.1145/3503222.3507752.

Ziming Liu, Shenggan Cheng, Haotian Zhou, and Yang You. Hanayo: Harnessing wave-like pipeline
parallelism for enhanced large model training efficiency. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2023.
ISBN 9798400701092. doi: 10.1145/3581784.3607073. URL https://doi.org/10.1145/
3581784.3607073. https://doi.org/10.1145/3581784.3607073.

Meta. MTIA v1: Meta’s first-generation Al inference accelerator. https://ai.meta.com/
blog/meta-training—inference—accelerator—-AI-MTIA/, 2023.

Nvidia. Image resize and watermarking example using nvJPEG. https:
//github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/
Image—Resize-WaterMark, 2019. URL https://github.com/NVIDIA/

CUDALibrarySamples/tree/master/nvJPEG/Image—Resize—WaterMark.

Nvidia. CUDA C programming guide. https://docs.nvidia.com/cuda/
cuda-c-programming—-guide/, 2024a.

Nvidia. Nvidia multi-instance GPU memory protection. https://docs.nvidia.com/
deploy/mps/index.html#memory—-protection), 2024b.

Nvidia. Nvidia multi-instance GPU user guide. http://docs.nvidia.com/datacenter/
tesla/mig-user—guide/index.html, 2024c. URL http://docs.nvidia.com/
datacenter/tesla/mig-user—guide/index.html.

Nvidia. Multi-process service. https://docs.nvidia.com/deploy/mps/index.html,
2024d. URL |https://docs.nvidia.com/deploy/mps/index.htmll

Kazuki Osawa, Shigang Li, and Torsten Hoefler. PipeFisher: Efficient training of large language
models using pipelining and fisher information matrices. In Proceedings of Machine Learning
and Systems (MLSys), 2023. URL https://proceedings.mlsys.org/paper_files/
paper/2023/£file/dd064459e9e£f4100671ba326£f0f96f2b-Paper-mlsys2023,
pdfl https://doi.org/10.48550/arXiv.2211.14133|

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation rank-
ing: Bring order to the web. https://www.cis.upenn.edu/~mkearns/teaching/
NetworkedLife/pagerank.pdf, 1998.

PyTorch. Models and pre-trained weights — Torchvision main documentation. https:
//pytorch.org/vision/main/models.html, a. URL https://pytorch.org/
vision/main/models.htmll

PyTorch. Pytorch profiler. https://pytorch.org/tutorials/recipes/recipes/
profiler recipe.html,b.

12


https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1145/3542929.3563503
https://doi.org/10.1109/SPW.2019.00037
https://doi.org/10.1109/SPW.2019.00037
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3503222.3507752
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://doi.org/10.1145/3581784.3607073
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/
https://ai.meta.com/blog/meta-training-inference-accelerator-AI-MTIA/
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://github.com/NVIDIA/CUDALibrarySamples/tree/master/nvJPEG/Image-Resize-WaterMark
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/deploy/mps/index.html#memory-protection
https://docs.nvidia.com/deploy/mps/index.html#memory-protection
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
http://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://docs.nvidia.com/deploy/mps/index.html
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/dd064459e9ef4100671ba326f0f96f2b-Paper-mlsys2023.pdf
https://doi.org/10.48550/arXiv.2211.14133
https://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/pagerank.pdf
https://www.cis.upenn.edu/~mkearns/teaching/NetworkedLife/pagerank.pdf
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/vision/main/models.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html

Under review as a conference paper at ICLR 2025

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble (almost) pipeline parallelism.
In The Twelfth International Conference on Learning Representations (ICLR), 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAl blog, 1(8):9, 2019.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Min-
ing (KDD), 2020. ISBN 978-1-4503-7998-4. doi: 10.1145/3394486.3406703. URL https:
//dl.acm.orqg/doi/10.1145/3394486.3406703. https://doi.org/10.1145/
3394486.3406703.

RunPod. RunPod - The cloud built for Al. https://www.runpod.io/, 2024. URL https:
//www.runpod.io/.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2020. https://doi.org/10.48550/arXiv.
1909.08053l

Foteini Strati, Xianzhe Ma, and Ana Klimovic. Orion: Interference-aware, fine-grained GPU
sharing for ml applications. In Proceedings of the Nineteenth European Conference on Com-
puter Systems (EuroSys), 2024. ISBN 9798400704376. doi: 10.1145/3627703.3629578. URL
https://doi.org/10.1145/3627703.3629578. https://doi.org/10.1145/
3627703.3629578L

John Thorpe, Pengzhan Zhao, Jonathan Eyolfson, Yifan Qiao, Zhihao Jia, Minjia Zhang, Ravi
Netravali, and Guoqing Harry Xu. Bamboo: Making preemptible instances resilient for
affordable training of large DNNs. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2023. ISBN 978-1-939133-33-5. URL https://
www.usenix.org/conference/nsdi23/presentation/thorpe. https://www.
usenix.org/conference/nsdi23/presentation/thorpe.

Zhen Xu, Xuhao Chen, Jie Shen, Yang Zhang, Cheng Chen, and Canqun Yang. Gardenia: A
graph processing benchmark suite for next-generation accelerators. J. Emerg. Technol. Comput.
Syst., 2019. ISSN 1550-4832. doi: 10.1145/3283450. URL https://doi.org/10.1145/
3283450, https://doi.org/10.1145/3283450.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on ground-
truth. In Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics, 2012. ISBN
9781450315463. doi: 10.1145/2350190.2350193. URL https://doi.org/10.1145/
2350190.2350193l https://doi.org/10.1145/2350190.2350193.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open pre-trained transformer language models. arXiv preprint arXiv:2205.01068, 2022.
https://doi.org/10.48550/arXiv.2205.01068.

Yicheng Zhang, Ravan Nazaraliyev, Sankha Baran Dutta, Nael Abu-Ghazaleh, Andres Marquez, and
Kevin Barker. Beyond the bridge: Contention-based covert and side channel attacks on multi-GPU
interconnect. arXiv preprint arXiv:2404.03877, 2024. https://arxiv.org/abs/2404.
03877v2.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang,
Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and
Ton Stoica. Alpa: Automating inter- and intra-operator parallelism for distributed deep
learning. In 16th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), 2022. ISBN 978-1-939133-28-1. URL https://www.usenix.org/
conference/osdi22/presentation/zheng—lianmin. https://www.usenix.
org/conference/o0sdi22/presentation/zheng-lianmin.

13


https://dl.acm.org/doi/10.1145/3394486.3406703
https://dl.acm.org/doi/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://www.runpod.io/
https://www.runpod.io/
https://www.runpod.io/
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.48550/arXiv.1909.08053
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578
https://doi.org/10.1145/3627703.3629578
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://www.usenix.org/conference/nsdi23/presentation/thorpe
https://doi.org/10.1145/3283450
https://doi.org/10.1145/3283450
https://doi.org/10.1145/3283450
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.1145/2350190.2350193
https://doi.org/10.48550/arXiv.2205.01068
https://arxiv.org/abs/2404.03877v2
https://arxiv.org/abs/2404.03877v2
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin
https://www.usenix.org/conference/osdi22/presentation/zheng-lianmin

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 USE OF SIDE TASKS INTERFACE

This section describes FreeRide’s iterative and imperative interface mentioned in Section[3.1]in detail.

Original GPU workload

Side task in FreeRide

\

/impor't 000

import ...
from FreeRide.task import IterativeTask

~

def train(args):

batch_size = args.batch_size
device = args.device
transform = transforms.Compose([...]) @

dataset = Dataset()
dataloader = DatalLoader(...)
model = models.resnet18(...)

model = model.to(device)
criterion = CrossEntropylLoss()
optimizer = Adam(...) TN
for data, target in dataloader:

data = data.to(device)

target = target.to(device)

output = model(data) |

loss = criterion(output, target)

loss.backward()

optimizer.step()

optimizer.zero_grad()

/®

/®

if __name__ == "__main__
parser = ArgumentParser()
args = parser.parse_args()
train(args)

N U

(D: Import dependencies and create task object

(), (3): Load model and data to main and GPU memor\}x@
(4): Step-wise implementation
(5): Parse arguments and start side task

transform = transforms.Compose([...])
dataset = Dataset()
dataloader = DatalLoader(...)
model = models.resnet18(...)
T with task.init_side_task():
model = model.to(device)
criterion = CrossEntropyLoss()
optimizer = Adam(...)
mdata, target in
task.run_next_step(dataloader):
data = data.to(device)
target = target.to(device)
output = model(data)
loss = criterion(output, target)
loss.backward()

——»args = parser.parse_args()

def train(args):
task = IterativeTask(args)

»with task.create_side_task():
batch_size = args.batch_size
device = args.device

optimizer.step()
optimizer.zero_grad()

if _ _name__ __main__
parser = ArgumentParser()

train(args)

J

Figure 5: Example of implementing ResNet18 training using the iterative interface of FreeRide.

Original LLM inference workload

\
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ﬁmpor‘t ces

An example of LLM inference side task in FreeRide

from FreeRide.task import IterativeTask
»

def run(args):
tokenizer = from_pretrained(..)
model = from_pretrained(..)
inputs = input_loader(..)
output_writer = MsgQueue()

_

model = from_pretrained(..).to(device)

for input in inputs:
t = tokenizer(inputs).to(device)
outputs = model(inputs)
s = tokenizer.batch_decode(t)
output_writer.write(s)

®
@
a
@)

if __name__ == "__main__":
parser = ArgumentParser()
args = parser.parse_args()
run(args)

®

Import dependencies and create task object

(3): Load model and data to main and GPU memory
Step-wise implementation

Parse arguments and start side task

\
@:
@,
OF
®:

—»with task.create_side_task():

model = model.to(device)
Mtask. run_next_step(inputs):

—>args

N\

def run(args):
task = IterativeTask(args)

tokenizer = from_pretrained(..)
model = from_pretrained(..)
inputs = input_loader(..)
msg_queue = MsgQueue()

with task.init_side_task():

t = tokenizer(inputs).to(device)
outputs = model(inputs)

s = tokenizer.batch_decode(t)
msg_queue.write(s)

if __name__ == "__main__

parser = ArgumentParser()
parser.parse_args()
run(args)

J

Figure 6: Example of LLM inference using the iterative interface of FreeRide.

Iterative programming interface. In Figure[5]and Figure[f] we present examples of implementing
side tasks to train ResNet18 and to do LLM inference using the iterative interface of FreeRide in
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Python. As demonstrated by these two examples, the flexibility and versatility of FreeRide enables
the user to implement various side tasks with little engineering effort. Less important lines such as
importing dependencies and parsing arguments are simplified. Porting this example involves mainly
five steps. Step @: import FreeRide dependencies and inherit the iterative interface class, which
includes an implementation for the state machine abstraction, communication with the side task
manager, and the program-directed mechanism to limit the GPU execution time. The programmer
only has to migrate the implementation of the original GPU workload to the interface. Steps @ and
®@: implement the side task initialization in 2 state transition functions, CreateSideTask () and
InitSideTask (), to load the context into main memory and GPU memory respectively. Step @:
wrap the original loop implementation with RunNext Step (). Step ®: the main function handles
argument parsing and runs the side task interface.

Most of the modifications are trivial, e.g., wrapping implementations with side task state transition
functions in Step @, @, and @, which are required by Python. Aside from this, the programmer can
directly copy the important logic, e.g., loading the dataset and training the model, from the original
implementation. In addition, if the programmer customizes the model architecture instead of using
the publicly available ones, the model implementation also does not require modification.

Imperative programming interface. This interface does not require the programmer to implement
the side task in a step-wise way. Therefore, instead of implementing the side task in multiple functions
(steps @ — @), the programmer can merge them in RunGpuWorkload (). However, this approach
trades performance for less programming effort, as pausing side tasks through the framework-enforced
mechanism incurs more overheads. When the side task manager initiates PauseSideTask () state
transition via an RPC at the end of a bubble, even though the CPU process of the side task is paused
by the framework-enforced mechanism (Section [3.2.3)) after the state transition, CUDA kernels that
have already started cannot be paused because they are asynchronous [Nvidial (2024a). As a result,
these CUDA kernels will overlap with pipeline training, causing a higher performance overhead than
the iterative interface.

A.2 SIDE TASK MANAGEMENT ALGORITHMS

In this section, we present the side task management algorithms mentioned in Section To keep
track of side tasks and workers, the side task manager maintains the following fields for each worker,
used by Algorithms|I]and [2|for side task management:

* GPUMem: the available GPU memory size.

* TaskQueue: the queue of side tasks ordered by submission timestamps.

* CurrentTask: the side task that is currently served.

* CurrentBubble: the bubble that is currently valid.

Algorithm 1: Procedure upon a new side task.

1: Input: new side task T'ask, workers’ metadata Workers
2: MinNumTasks <+ oo, SelectedW orker < None

3: for all Worker in Workers do

4 if Worker. GPUMem > Task.GPU M em then

5: NumTasks < Worker.GetTaskNum()

6: if NumTasks < MinNumTasks then

7: MinNumTasks < NumTasks, SelectedW orker = Worker
8: if SelectedW orker # None then

9:  SelectedWorker.Add(Task)

10: else

11:  RejectSideTask()

Algorithm|I]describes how the side task manager assigns side tasks to workers. When the side task
manager receives a new side task together with its GPU memory requirement (through profiling,
Section[3.2.1)), it first filters out all workers with enough available GPU memory (lines 2—3). Then,
from these workers, it selects the one with the smallest number of tasks (lines 4—7). If the side task
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Algorithm 2: Managing bubbles and side tasks.

1: Input: workers’ metadata Workers

2: while SideTaskManagerlsRunning do

for all Worker in Workers do

4 if Worker.Current Bubble # None and Worker.Current Bubble. HasFEnded() then
5: if Worker.CurrentTask # None then

6: Worker.CurrentTask.PauseSideTask()
7.

8

Worker.CurrentBubble < None
if Worker.HasNewBubble() then

9: Worker.UpdateCurrent Bubble()

10: if Worker.CurrentTask = None then

11: if Worker.TaskQueue.IsEmpty() then

12: continue

13: Worker.CurrentTask < Worker. TaskQueue.Next()
14: if Worker.CurrentTask.IsCreated() then

15: Worker.CurrentTask.InitSideT ask()

16: else if Worker.CurrentTask.IsPaused() then

17: Worker.CurrentTask.StartSideT ask()

manager has selected a worker, it will assign the side task to that worker (lines 8—9). Otherwise, it
will reject the side task because of insufficient GPU memory (line 11).

Algorithm [2] describes how the side task manager manages bubbles and side tasks during pipeline
training. The side task manager iterates through all workers (line 2). If CurrentBubble has just ended
for a worker, the side task manager will pause CurrentTask of the worker and clear CurrentBubble
(lines 3—7). Upon a new bubble, the side task manager updates the CurrentBubble of this worker
(lines 8—9). It then checks if the worker has a CurrentTask. If not, it will select the one with the
smallest submission timestamp from TaskQueue as CurrentTask (lines 10—13). After that, the side task
manager initiates InitSideTask () if the newly added CurrentTask is in CREATED state (lines
14—15); otherwise, its state is PAUSED and the side task manager initiates StartSideTask ()
(lines 16—17).

A.3 DETAILED DEFINITION OF METRICS

In this section, we describe the detailed definition of time increase I and cost savings S. Time
increase describes the performance overhead of co-locating side tasks with the main pipeline training
workload. It is defined as

I = TwithSideTasks - TnoSideTask

TnoSideTask
For cost savings, we define the cost of pipeline training without side tasks as
C'noSideTask = PServerfl X TnoSideTask ’
the cost of pipeline training with side tasks as
CwithSideTasks = PServer—I X TwithSideTasks )
and the cost of running the same side tasks on dedicated GPUs as

WsidcTask,Scrvcr—I

051deTasks - zEach sideTask PServer—II X ThsideTask,Serverfﬂ
where WideTask,Server—1 1 the work done by a side task on Server-I, e.g., the number of epochs for
model training side tasks, the number of iterations for graph analytics side tasks, and the number of
images for the image processing side task. ThgjqcTask,Server—1t 18 the throughput of running the same
side task on Server-II, which we measure by running side tasks individually on Server-II. Finally, we
define the cost savings .S as

S — CsideTasks — (CwithSideTasks — CnoSideTask)

CnoSideTask
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Figure 8: Demonstration of GPU resource limit in FreeRide.

A.4 SENSITIVITY STUDY

This section describes the sensitivity study which demonstrates that FreeRide can achieve superior
time increase and cost savings compared with MPS in different settings. We change the side task
batch size, DeepSpeed model size, and DeepSpeed micro-batch numbers of different side tasks, and
study the time increase and cost savings of FreeRide with the iterative interface.

(1) Varying batch sizes. Figure[7[a) and (b) include model training side tasks under variable batch
sizes. Other side tasks are not included as they do not run with batch sizes. OOM means that the GPU
in Server-1I does not have enough GPU memory for the configuration, so the cost savings cannot be
calculated. FreeRide has low performance overheads, with around 1% increase in execution time,
and cost savings of 3.4% — 7.5%.

(2) Varying model sizes. In Figure EKC) and (d), the performance overheads of FreeRide range from
-0.7% to 1.9%, and cost savings range from 1.8% to 22.2%. The main reason is the shorter bubble
durations when training larger models as the main workload, which was also shown in Figure[l]

(3) Varying micro-batch numbers. In Figure |ZKe) and (f), the performance overhead of FreeRide
increases from -0.4% to 1.5%, and cost savings reduces from 2.1% to 11.8%. When the micro-batch
number increases, because of the lower bubble rate (Section @) the cost savings decrease.

A.5 EFFECTIVENESS OF GPU RESOURCE LIMIT
This section demonstrates the effectiveness of GPU resource limit mechanisms of FreeRide. We use
training ResNet18 as an example.

Side task execution time limit. Figure [8[a) demonstrates a case where the side task does not pause
after the bubble that ends at ¢ + 2. With GPU resource limit, as shown by the green and purple curves,
the worker terminates the side task after a grace period via the framework-enforced mechanism.

Side task GPU memory limit. Figure [8(b) illustrates another case where the side task keeps
allocating GPU memory despite its 8 GB limit. Without FreeRide’s GPU resource limit mechanism,
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the side task’s GPU memory allocation is only capped by the physical memory limit of the GPU,
potentially interfering with the main training workload. With GPU resource limit, after the side task
process exceeds its § GB GPU memory limit, it is terminated to release GPU memory.
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